博客
关于我
矩阵可逆的一种刻画方式
阅读量:535 次
发布时间:2019-03-08

本文共 404 字,大约阅读时间需要 1 分钟。

矩阵A满足A + A^T = I,证明其可逆性

矩阵A满足A + A^T = I,我们需要证明A是可逆的。


证明一:反证法

假设A不可逆,那么根据矩阵的理论,存在至少一个非零矩阵x0,使得Ax0 = 0。

考虑x0^T A x0,展开得到:x0^T A x0 = x0^T (A + A^T) x0

由于A + A^T = I,代入得到:x0^T A x0 = x0^T I x0 = x0^T x0

另一方面,展开x0^T A x0,考虑到Ax0 = 0,A^T x0 = (Ax0)^T = 0^T = 0,因此:x0^T A x0 = x0^T 0 = 0

于是得到:x0^T x0 = 0

这意味着x0是一个幂等矩阵且为零矩阵。但这与我们的假设矛盾,因为x0是非零矩阵。这就说明A必须是可逆的。


结论

通过反证法,我们发现矩阵A必须是可逆的,以满足A + A^T = I的条件。因此,A是可逆的矩阵。

转载地址:http://fulnz.baihongyu.com/

你可能感兴趣的文章
NO.23 ZenTaoPHP目录结构
查看>>
no1
查看>>
NO32 网络层次及OSI7层模型--TCP三次握手四次断开--子网划分
查看>>
NOAA(美国海洋和大气管理局)气象数据获取与POI点数据获取
查看>>
NoClassDefFoundError: org/springframework/boot/context/properties/ConfigurationBeanFactoryMetadata
查看>>
node exporter完整版
查看>>
Node JS: < 一> 初识Node JS
查看>>
Node Sass does not yet support your current environment: Windows 64-bit with Unsupported runtime(72)
查看>>
Node 裁切图片的方法
查看>>
Node+Express连接mysql实现增删改查
查看>>
node, nvm, npm,pnpm,以前简单的前端环境为什么越来越复杂
查看>>
Node-RED中Button按钮组件和TextInput文字输入组件的使用
查看>>
Node-RED中Switch开关和Dropdown选择组件的使用
查看>>
Node-RED中使用html节点爬取HTML网页资料之爬取Node-RED的最新版本
查看>>
Node-RED中使用JSON数据建立web网站
查看>>
Node-RED中使用json节点解析JSON数据
查看>>
Node-RED中使用node-random节点来实现随机数在折线图中显示
查看>>
Node-RED中使用node-red-browser-utils节点实现选择Windows操作系统中的文件并实现图片预览
查看>>
Node-RED中使用node-red-contrib-image-output节点实现图片预览
查看>>
Node-RED中使用node-red-node-ui-iframe节点实现内嵌iframe访问其他网站的效果
查看>>